Complexity of the Bollobás-Riordan Polynomial

نویسندگان

  • Markus Bläser
  • Holger Dell
  • Johann A. Makowsky
چکیده

The coloured Tutte polynomial by Bollobás and Riordan is, as a generalisation of the Tutte polynomial, the most general graph polynomial for coloured graphs that satisfies certain contractiondeletion identities. Jaeger, Vertigan, and Welsh showed that the classical Tutte polynomial is #P-hard to evaluate almost everywhere by establishing reductions along curves and lines. We establish a similar result for the coloured Tutte polynomial on integral domains. To establish this result in a proper way, we introduce a new kind of reductions, uniform algebraic reductions, that are well-suited to investigate the complexity of the evaluation of graph polynomials. Our main result identifies a small, algebraic set of exceptional points, with the property that there exists a uniform algebraic reduction that reduces the evaluation problem for the coloured Tutte polynomial at any one non-exceptional point to any other non-exceptional point. On the way we also obtain a stronger result and a new proof for the difficult evaluations in the complexity analysis for the classical Tutte polynomial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The multivariate signed Bollobás-Riordan polynomial

Ribbon graphs are surfaces with boundary together with a decomposition into a union of closed topological discs of two types, edges and vertices. These sets are subject to some natural axioms recalled in section 2.1. For such a generalisation of the usual graphs, B. Bollobás and O. Riordan found a topological version of the Tutte polynomial [3, 4]. In the following, we will refer to this genera...

متن کامل

Generalized duality for graphs on surfaces and the signed Bollobás-Riordan polynomial

We generalize the natural duality of graphs embedded into a surface to a duality with respect to a subset of edges. The dual graph might be embedded into a different surface. We prove a relation between the signed Bollobás-Riordan polynomials of dual graphs. This relation unifies various recent results expressing the Jones polynomial of links as specializations of the Bollobás-Riordan polynomials.

متن کامل

Quasi-tree expansion for the Bollobás--Riordan--Tutte polynomial

Bollobás and Riordan introduced a three-variable polynomial extending the Tutte polynomial to oriented ribbon graphs, which are multi-graphs embedded in oriented surfaces, such that complementary regions (faces) are discs. A quasi-tree of a ribbon graph is a spanning subgraph with one face, which is described by an ordered chord diagram. By generalizing Tutte’s concept of activity to quasi-tree...

متن کامل

Non-orientable quasi-trees for the Bollobás-Riordan polynomial

We extend the quasi-tree expansion of A. Champanerkar, I. Kofman, and N. Stoltzfus to not necessarily orientable ribbon graphs. We study the duality properties of the Bollobás-Riordan polynomial in terms of this expansion. As a corollary, we get a “connected state” expansion of the Kauffman bracket of virtual link diagrams. Our proofs use extensively the partial duality of S. Chmutov.

متن کامل

The Jones polynomial and graphs on surfaces

The Jones polynomial of an alternating link is a certain specialization of the Tutte polynomial of the (planar) checkerboard graph associated to an alternating projection of the link. The Bollobás–Riordan– Tutte polynomial generalizes the Tutte polynomial of graphs to graphs that are embedded in closed oriented surfaces of higher genus. In this paper we show that the Jones polynomial of any lin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008